Virtual Integration of Heterogeneous

Data and Data Model Unification
Specification Calculus

Sergey Stupnikov
Institute of Informatics Problems, RAS
sstupnikov@ipiran.ru

mailto:sstupnikov@ipiran.ru

e
Contents

e Abstract data types

e Subtype relation

» Type specification

e Type reduct

e Most common reduct
e Type refinement

e Type meet

e Type join

e Type lattice

4 e\
Abstract Data Type

o ADT definition includes a specification defining a
behavior of the type values by means of the
operation signatures and of their abstract descriptions

utypen
Project 0.*
-area : string
-grads : real -cooperateWith

7N

«types stypesIProject
RProject

-coardinator : Organization
-leader : Professor

-coordinator : Company
-sponsor ; Company

P v e +candidateProj(in j : Project, out ¢ : Project
-priorityTheme : string +areaCnn5tr{}J|:) - Proj ject) 1
+candidateProj{in j : RProject, out ¢ ; RProject) 1
+aregaConstr{)
+eaderConstr{)

-cooperateWith 0.

4 . e
Research Project Specification

{ RProject; in:type; supertype: Project;
coordinator: Organization;

leader: Professor;

priority _theme: string;

cooperate with: {set; type_of element. RProject; };

candidate proj: {in: function;
params: { +j/RProject, -c/Project};
{{ this.area = j.area & this.priority_theme = j.priority_theme & c' =] }}};

area_constr: {in: predicate, invariant;
{{ all p/RProject (p.area = '‘comp-sci' ->
p.grade =5 &
(p.priority_theme = 'open systems' | p.priority_theme = 'interoperability’)) }}};

leader _constr: {in: predicate, invariant;
{{ all p/RProject (p.leader.degree ='PhD") }}}

)
-

~
o

e
Industrial Project Specification

{IProject;

in: type;

supertype: Project;

coordinator. Company;

cooperate_with: {set; type_of element: Project; };
sponsor: Company;

candidate proj: {in: function;
params: {+j/Project, -c/Project};
{{ this.area = j.area & c'=]}}};

area_constr: {in: predicate, invariant;
{{ all p/IProject (p.area = 'comp-sci' -> p.grade >= 3)}}}

~
o

~ |
o

Subtype relation informally

e a value of a subtype can be used in all cases where a
supertype value is expected

e correspondence of type operations

e supertype’s invariant should be implied by subtype’s
Invariant

e supertype’s operations should be refined by subtype’s
operations
e multiple subtyping is allowed (for a subtype a set of
supertypes can be defined)

e operations of a subtype to which operations of a
supertype correspond can be renamed in case of
multiple subtyping

- /

4 ‘\
Type Specification

» Type specification is a triplet <V, O, |>
e \V; — extension the type (carrier of the type) - set of
admissible instances of the type

e O; — operation symbols, indicating operation arguments
and result types

e |- —invariant symbols

e Conjunction of all invariants in |; constitutes the type
Invariant Inv;

e Every instance must satisfy the invariant Inv-

e
Type Specification - Example

wtypen
«type» RProject
Project -coordinator : Organization
- -leader : Professor
-area : string K —— =70 o
_grade : real -priority Theme : string
+candidateProj{in | : RProject, oul ¢ : Praject)
+areaConstry{)
+leaderConstr{)

° VRProject :{

<self—uidl, area—'comp-sci’, grade—5, coordinator—uid2, leader—uid3,
proiorityTheme—’interoperability’> ,

<self—uid4, area—’biology’, grade—3, coordinator—uid5, leader—uid6,
proiorityTheme—’gene-analysis’™> ,

.}

® ORProject — { candidateProj(+j/Rproject, -c/Project) }
¢ IRProject — { areaConstr, leaderConstr }
° InVRProject =
all p/RProject (p.area = ‘comp-sci' -> p.grade =5 &
(p.priority_theme = 'open systems' | p.priority_theme = 'interoperability')) &
k all p/RProject (p.leader.degree = 'PhD’)

/

4 e\
Subtype relation formally

e Invariant rule: v'v: Vg, (Is,p(V) = lgyp(AbS(V)))

* Precondition rule: subtype operation should terminate whenever a
supertype operation is guaranteed to terminate

V'Vs Vgups X2 X (preOg,,(Abs(vy), x?) = preOg,p(Vs, X?))

» Postcondition rule: the state after the subtype operation (marked by ‘)
represents one of those abstract states in which an operation of a supertype
could terminate
V'Vs: Vg Vs Veup X720 X, Y20 Y (

preOg,(AbS(Vg), X?) A poStOg,(Vy, Vs, X?, ¥y?)=
postOg,,(Abs(vy), Abs(vy), X?,¥?))

 Type specification (ex. Tq,,) Is correct if
e ithasamodel FV: Vg, (ls,p(V))

e type operations preserve type invariants
V'V Vgups V7 Vg X2 X, y20 Y (
lsup(V) A PreOg, (v, X?) A POStOq,(V, V7, X?,¥7?) = lgyp(V))

-

4 @\
Subtype relation example (1)

«typeslProject

atypen

RProject ,
-area : string
o Etnng ﬁ_gmde : rﬁﬁl
—_—_’—-—__-_’-ﬂﬂﬂ-rdinatﬂr - Company
-coordinator : Organization -sponsor : Company

-grade : real
+eandidateFroj(in j : RProject, out ¢ - meec” ['+ candidateProj(in j : Project, out ¢ : Project)

+areaConstr{) -—'————_.5_____++areaﬂnn str()

e Organization is a supertype of Company

postcondition

precondition
A /J\
L T

mj area & this.priority_theme = j.priority_theme & c' = j

)
:
|

* RProject.candidateProj

Is refined by
IProject.candidateProj

(_59!|dm|_

this.area = j.area &c' =

e

e\
Subtype relation example (I

«typeslProject

atypen
RProject

— -area : string
-area : string -grade : real
-coordinator : Company

-grade : real
-coordinator : Organization -sponsor : Company

+candidateProj(in j : RProject, out ¢ : Project) +candidateProj(in j : Project, out ¢ : Project)
+areaConstr() +areaConstr{)

p.area = 'comp-sci’ => p.grade >= 3

» |project.areaConstr
is implied by

= |mplies=»

- p.area = 'comp-sci' => p.grade = 5 &
Rproject.areaConstr (p.priority_theme = 'open systems' | p.priority_theme = "interoperability’)

e

Overdefined and Least Informative Type

e Taval is least informative type, any type is a
subtype of Taval

e Tnone is overdefined type, any type is a
supertype of Thone

e predefined none value is of type Tnone and may be
returned by a function as an empty result of any type

Taval

?\

Project
AN
RProject IProject
A A
Tnone

e
Type Reduct

subspecification of type T-:
* Vg =V;
*Or Oy

°® atypes
I R - IT Project

-area : string
-grade : real

JAN

~
©

e Reduct Ry = <Vg, Oy, Ig>of type T =<V, O, [>Is a

RProject[area,

dtypes
leader, leaderConstr]

-leader : Professor

-area : string

+leaderConstr()

AN

atypen
RProject

-coordinator : Organization
-leader : Professor
-priority Theme : string

+candidateProjfin | : RProject, out ¢ : Project)
+areaConstr()
+leaderConsir()

e

Most Common Reduct

MCR(A, B)

refines

R_B

reduct

reduct

/ reduct

- -

\

reduct \‘m

\
\

reduct

~
o

MCR(A, B) #
MCR(B, A)

4 @\
Type Refinement

* Type U is a refinement of type T Iff
e there exists an injective mapping Ops: O; = Oy;
e there exists an abstraction function Abs: V,, — V; that

maps each admissible state of U into the respective state
of T

e VX eV Yy eV, (Abs(x,y) = Iyly) Al (X))
e for every operation o € O; the operation Ops(o) =0' € O,
IS a refinement of 0
pre(o) = pre(o')
post(o') = post(0).

/

MCR(RProject, IProject)

wtypen
Project

D”*

-area : string
-grade : real

-cooperate\With

N

wtypes
RProject

-coordinator : Organization
-leader : Professor
-priorityTheme © string

stypexlProject

-coordinator : Company
-sponsor : Company

+oandidateProjfin § . RProject, out ¢ © Project)
+areaConstr()
+leaderConstr()

+candidateProj(in j : Project, out ¢ : Project)
+areaConstr{}

-cooperateVith 0.*

/

MCR(IProject, RProject)

-cooperateWith 0..*

wtypen
Project

D”*

-area : string
-grade : real

-cooperate\With

N

wtypes
RProject

-coordinator : Organization
-leader : Professor
-priorityTheme © string

stypexlProject

-coordinator : Company
-sponsor : Company

+oandidateProjfin § . RProject, out ¢ © Project)
+areaConstr()
+leaderConstr()

+candidateProj(in j : Project, out ¢ : Project)
+areaConstr{}

-cooperateVith 0.*

4 8
Type MEET o

e The meet operation T, & T, of produces a type T as an
"Intersection” of specifications of the operand types

e Common elements of the types are defined by most
common reducts MCR(T,, T,) and MCR(T,, T,)

* Or1 8712 = Omcrait2) VY Omcrerz,)
e Type invariant of T Is defined as a disjunction of
operand types invariants InVycreri 12 | INVycrr2, 1)

e T, & T, Is a supertype of both T, and T,

e
Type Meet Example

k -cooperateVith 0.*

wtypen
Project 0.*
-area : string
“grerEea -cooperateWith
AN
R*;:!-'P?* t \ «typenIProject
rojec
- - J -coordinator : Company
-coardinator : Organization N _sponsor : Company
-leader : Professor — —
priorityTheme string \\ :g::g;:;Fr{r?J[ln j : Project, out c : Project)
+candidateProjfin j : RProject, out ¢ © Project) 1
+araaConstr()
+leaderConstr{)

4 O\
Type JOIN o

e The join operation T, | T, produces a type T as a "join"
of specifications of the operand types, common
elements are included only once

e Common elements of the types are defined by most
common reducts MCR(T,, T,) and MCR(T,, T,)

° OT1| T2 — (OTl\OMCR(Tl,TZ)) U (OTZ\OMCR(TZ,Tl)) U
(OMCR(Tl,TZ) a OMCR(TZ,Tl))
e Type invariant of T is defined as a conjunction of
operand types invariants Invy; & Inv,

e T, | T, Is a subtype of both T, and T,

- /

/

Type Join Example

AN

-cooperate

S

utypan
Project 0.
-area : string
-grade : real -gooperateWith

7N

atypexsIProject

-coordinator © Organization
-leader : Professor
-priarity Theme : string

SN\
N

-coordinator : Company
-sponsar - Company

+areaConstr{)
+HeaderConstr{)

+candidateProf{in j : RProject, out ¢ ; Project)

+candidateProj(in j : Project, out ¢ : Project)

+areaConstr{)

-cooperateWith 0.

4 >\
Type Lattice o

e SetVv of types is a lattice over meet and join operations

e commutativity
T,& T,=T,& T,
T T,=T,| Ty
e associativity
T (T T3)=(Ty [Ty) | Ts
T,& (T, & T)=(T, & T,) & T,
e idempotence
T& T=T
T|T=T
e absorption
T, & (T Ty)=T,
T [(T & T,)=T,

