
Virtual Integration of Heterogeneous

Data and Data Model Unification
Specification Calculus

Sergey Stupnikov

Institute of Informatics Problems, RAS

sstupnikov@ipiran.ru

mailto:sstupnikov@ipiran.ru

Contents
 Abstract data types

 Subtype relation

 Type specification

 Type reduct

 Most common reduct

 Type refinement

 Type meet

 Type join

 Type lattice

2

Abstract Data Type
3

 ADT definition includes a specification defining a
behavior of the type values by means of the
operation signatures and of their abstract descriptions

Research Project Specification 4

{ RProject; in: type; supertype: Project;

 coordinator: Organization;

 leader: Professor;

 priority_theme: string;

 cooperate_with: {set; type_of_element: RProject; };

candidate_proj: {in: function;

 params: { +j/RProject, -c/Project};

 {{ this.area = j.area & this.priority_theme = j.priority_theme & c' = j }}};

 area_constr: {in: predicate, invariant;

 {{ all p/RProject (p.area = 'comp-sci' ->

 p.grade = 5 &

 (p.priority_theme = 'open systems' | p.priority_theme = 'interoperability')) }}};

 leader_constr: {in: predicate, invariant;

 {{ all p/RProject (p.leader.degree = 'PhD') }}}

 }

Industrial Project Specification
5

{IProject;

 in: type;

 supertype: Project;

 coordinator: Company;

 cooperate_with: {set; type_of_element: Project; };

 sponsor: Company;

 candidate_proj: {in: function;

 params: {+j/Project, -c/Project};

 {{ this.area = j.area & c' = j }}};

 area_constr: {in: predicate, invariant;

 {{ all p/IProject (p.area = 'comp-sci' -> p.grade >= 3)}}}

 }

Subtype relation informally
6

 a value of a subtype can be used in all cases where a

supertype value is expected

 correspondence of type operations

 supertype’s invariant should be implied by subtype’s

invariant

 supertype’s operations should be refined by subtype’s

operations

 multiple subtyping is allowed (for a subtype a set of

supertypes can be defined)

 operations of a subtype to which operations of a

supertype correspond can be renamed in case of

multiple subtyping

Type Specification
7

 Type specification is a triplet <VT, OT, IT>

 VT – extension the type (carrier of the type) - set of

admissible instances of the type

 OT – operation symbols, indicating operation arguments

and result types

 IT – invariant symbols

 Conjunction of all invariants in IT constitutes the type

invariant InvT

 Every instance must satisfy the invariant InvT

Type Specification - Example
8

 VRProject
 = {

 <selfuid1, area’comp-sci’, grade5, coordinatoruid2, leaderuid3,
proiorityTheme’interoperability’> ,

 <selfuid4, area’biology’, grade3, coordinatoruid5, leaderuid6,
proiorityTheme’gene-analysis’> ,

 … }

 ORProject
 = { candidateProj(+j/Rproject, -c/Project) }

 IRProject
 = { areaConstr, leaderConstr }

 InvRProject
 =

 all p/RProject (p.area = 'comp-sci' -> p.grade = 5 &

 (p.priority_theme = 'open systems' | p.priority_theme = 'interoperability')) &

 all p/RProject (p.leader.degree = 'PhD')

Subtype relation formally
9

 Invariant rule:  v: Vsub (Isub(v)  Isup(Abs(v)))

 Precondition rule: subtype operation should terminate whenever a

supertype operation is guaranteed to terminate

  vs: Vsub, x?: X (preOsup(Abs(vs), x?)  preOsub(vs, x?))

 Postcondition rule: the state after the subtype operation (marked by ‘)

represents one of those abstract states in which an operation of a supertype

could terminate

  vs: Vsub, v’s: Vsub, x?: X, y?: Y (

 preOsup(Abs(vs), x?)  postOsub(vs, v’s, x?, y?)

 postOsup(Abs(vs), Abs(v’s), x?, y?))

 Type specification (ex. Tsup) is correct if

 it has a model  v: Vsup (Isup(v))

 type operations preserve type invariants

  v: Vsup, v’: Vsup, x?: X, y?: Y (

 Isup(v)  preOsup(v, x?)  postOsup(v, v’, x?, y?)  Isup(v’))

Subtype relation example (I)
10

 Organization is a supertype of Company

 RProject.candidateProj

 is refined by

 IProject.candidateProj

Subtype relation example (II)
11

 Iproject.areaConstr

 is implied by

 Rproject.areaConstr

Overdefined and Least Informative Types
12

 Taval is least informative type, any type is a

subtype of Taval

 Tnone is overdefined type, any type is a

supertype of Tnone

 predefined none value is of type Tnone and may be

returned by a function as an empty result of any type

Type Reduct
13

 Reduct RT = <VR, OR, IR> of type T = <VT, OT, IT> is a

subspecification of type T:

 VR = VT

 OR  OT

 IR  IT

Most Common Reduct
14

Type Refinement
15

 Type U is a refinement of type T iff

 there exists an injective mapping Ops: OT  OU;

 there exists an abstraction function Abs: VU  VT that

maps each admissible state of U into the respective state

of T

  x  VT, y  VU (Abs(x, y)  IU(y)  IT (x))

 for every operation o  OT the operation Ops(o) = o'  OU

is a refinement of o

 pre(o)  pre(o')

 post(o')  post(o).

MCR(RProject, IProject)
16

+candidateProj(in j : RProject, out c : Project)

-area : string

-grade : real

-coordinator : Organization

«type»

MCR(RProject, IProject)

MCR(IProject, RProject)
17

1

-cooperateWith 0..*

+areaConstr()

-area : string

-grade : real

«type»

MCR(IProject, RProject)

Type MEET
18

 The meet operation T1 & T2 of produces a type T as an

"intersection” of specifications of the operand types

 Common elements of the types are defined by most

common reducts MCR(T1, T2) and MCR(T2, T1)

 OT1 & T2 = OMCR(T1,T2)  OMCR(T2,T1)

 Type invariant of T is defined as a disjunction of

operand types invariants InvMCR(T1,T2) | InvMCR(T2,T1)

 T1 & T2 is a supertype of both T1 and T2

+candidateProj(in j : RProject, out c : Project)

+areaConstr()

-area : string

-grade : real

-coordinator : Organization

«type»

RProject & IProject

1

-cooperateWith 0..*

Type Meet Example
19

Type JOIN
20

 The join operation T1 | T2 produces a type T as a "join"

of specifications of the operand types, common

elements are included only once

 Common elements of the types are defined by most

common reducts MCR(T1, T2) and MCR(T2, T1)

 OT1 | T2 = (OT1\OMCR(T1,T2))  (OT2\OMCR(T2,T1)) 

 (OMCR(T1,T2)  OMCR(T2,T1))

 Type invariant of T is defined as a conjunction of

operand types invariants InvT1 & InvT2

 T1 | T2 is a subtype of both T1 and T2

+candidateProj(in j : RProject, out c : Project)

+areaConstr()

+leaderConstr()

-area : string

-grade : real

-coordinator : Company

-leader : Professor

-priorityTheme : string

-sponsor : Company

«type»

RProject | IProject

1

-cooperateWith 0..*

Type Join Example
21

Type Lattice
22

 Set V of types is a lattice over meet and join operations

 commutativity

 T1 & T2 = T2 & T1

 T1 | T2 = T2 | T1

 associativity

 T1 | (T2 | T3) = (T1 | T2) | T3

 T1 & (T2 & T3) = (T1 & T2) & T3

 idempotence

 T & T = T

 T | T = T

 absorption

 T1 & (T1 | T2) = T1

 T1 | (T1 & T2) = T1

