

Virtual Integration of Heterogeneous Data and Data Model Unification Specification Calculus

Sergey Stupnikov

Institute of Informatics Problems, RAS

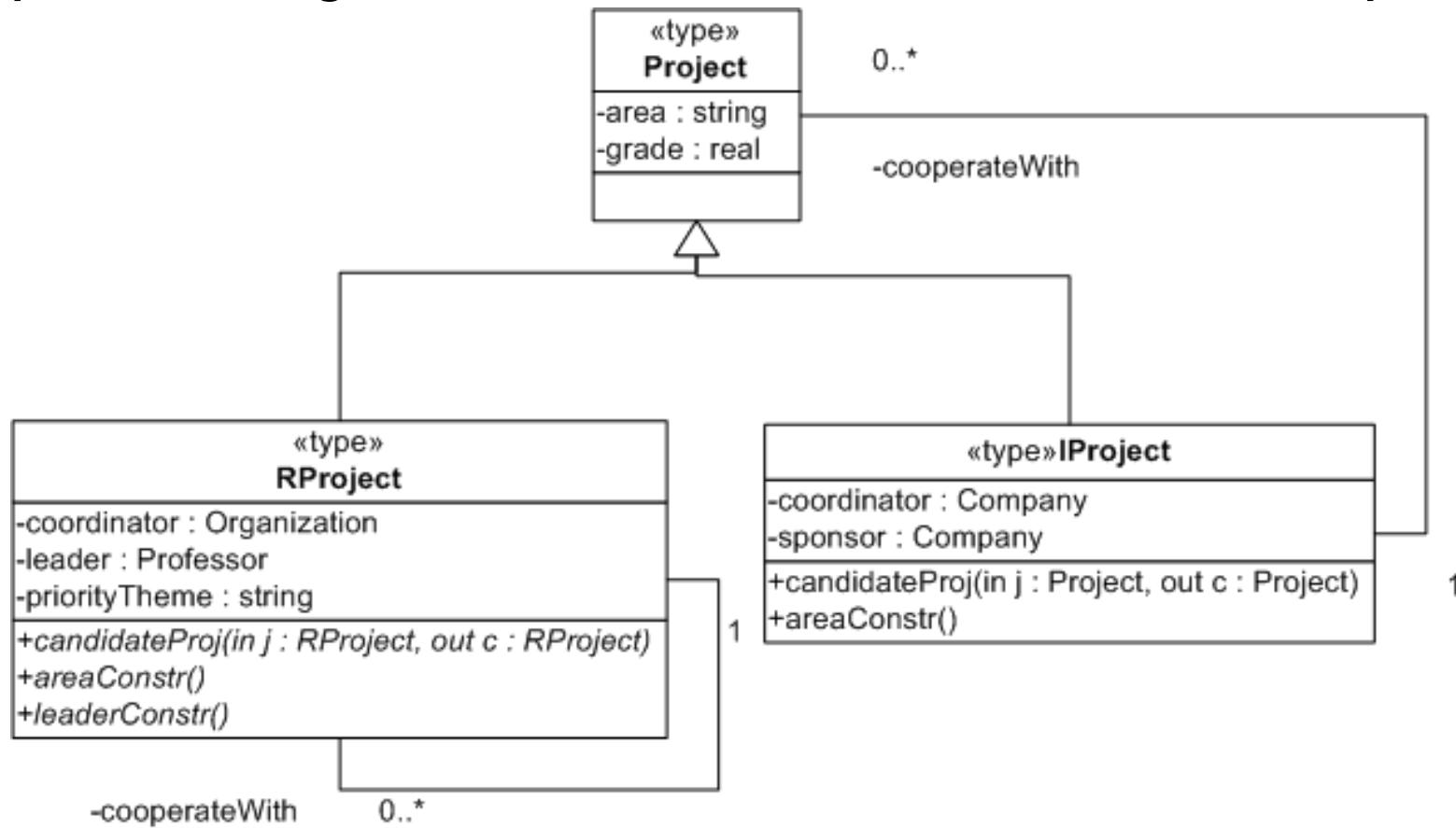
sstupnikov@ipiran.ru

Contents

- Abstract data types
- Subtype relation
- Type specification
- Type reduct
- Most common reduct
- Type refinement
- Type meet
- Type join
- Type lattice

Abstract Data Type

- ADT definition includes a specification defining a *behavior of the type values* by means of the *operation signatures* and of their *abstract descriptions*



Research Project Specification

```
{ RProject;  in: type;  supertype: Project;
  coordinator: Organization;
  leader: Professor;
  priority_theme: string;
  cooperate_with: {set; type_of_element: RProject; };

  candidate_proj: {in: function;
    params: { +j/RProject, -c/Project};
    {{ this.area = j.area & this.priority_theme = j.priority_theme & c' = j }}};

  area_constr: {in: predicate, invariant;
    {{ all p/RProject (p.area = 'comp-sci' ->
      p.grade = 5 &
      (p.priority_theme = 'open systems' | p.priority_theme = 'interoperability')) }}};

  leader_constr: {in: predicate, invariant;
    {{ all p/RProject (p.leader.degree = 'PhD') }}}
}
```

Industrial Project Specification

```
{IProject;  
in: type;  
supertype: Project;  
coordinator: Company;  
cooperate_with: {set; type_of_element: Project; };  
sponsor: Company;  
  
candidate_proj: {in: function;  
params: {+j/Project, -c/Project};  
{  
this.area = j.area & c' = j }}};  
  
area_constr: {in: predicate, invariant;  
{  
all p/IProject (p.area = 'comp-sci' -> p.grade >= 3 )}}}  
}
```

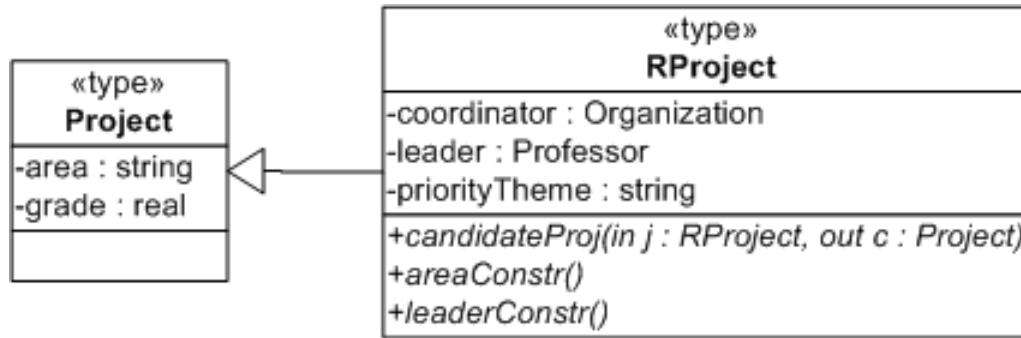
Subtype relation informally

- a value of a subtype can be used in all cases where a supertype value is expected
- correspondence of type operations
 - supertype's invariant should be *implied* by subtype's invariant
 - supertype's operations should be *refined* by subtype's operations
- multiple subtyping is allowed (for a subtype a set of supertypes can be defined)
- operations of a subtype to which operations of a supertype correspond can be renamed in case of multiple subtyping

Type Specification

- *Type specification* is a triplet $\langle V_T, O_T, I_T \rangle$
 - V_T – extension the type (carrier of the type) - set of admissible instances of the type
 - O_T – operation symbols, indicating operation arguments and result types
 - I_T – invariant symbols
- Conjunction of all invariants in I_T constitutes the type invariant Inv_T
- Every instance must satisfy the invariant Inv_T

Type Specification - Example



- $V_{RProject} = \{$
 $\langle \text{self} \rightarrow \text{uid1}, \text{area} \rightarrow \text{'comp-sci'}, \text{grade} \rightarrow 5, \text{coordinator} \rightarrow \text{uid2}, \text{leader} \rightarrow \text{uid3}, \text{priorityTheme} \rightarrow \text{'interoperability'} \rangle, \text{,}$
 $\langle \text{self} \rightarrow \text{uid4}, \text{area} \rightarrow \text{'biology'}, \text{grade} \rightarrow 3, \text{coordinator} \rightarrow \text{uid5}, \text{leader} \rightarrow \text{uid6}, \text{priorityTheme} \rightarrow \text{'gene-analysis'} \rangle, \text{,}$
 $\dots \}$
- $O_{RProject} = \{ \text{candidateProj}(+j/RProject, -c/Project) \}$
- $I_{RProject} = \{ \text{areaConstr}, \text{leaderConstr} \}$
- $Inv_{RProject} =$
 $\text{all p/RProject (p.area = 'comp-sci' } \rightarrow \text{p.grade = 5 \&}$
 $(\text{p.priority_theme} = \text{'open systems'} \mid \text{p.priority_theme} = \text{'interoperability'}) \text{ \&}$
 $\text{all p/RProject (p.leader.degree} = \text{'PhD')}$

Subtype relation formally

- *Invariant rule*: $\forall v: V_{sub} (I_{sub}(v) \Rightarrow I_{sup}(Abs(v)))$
- *Precondition rule*: subtype operation should terminate whenever a supertype operation is guaranteed to terminate

$$\forall v_s: V_{sub}, x?: X (preO_{sup}(Abs(v_s), x?) \Rightarrow preO_{sub}(v_s, x?))$$
- *Postcondition rule*: the state after the subtype operation (marked by $'$) represents one of those abstract states in which an operation of a supertype could terminate

$$\forall v_s: V_{sub}, v'_s: V_{sub}, x?: X, y?: Y ($$

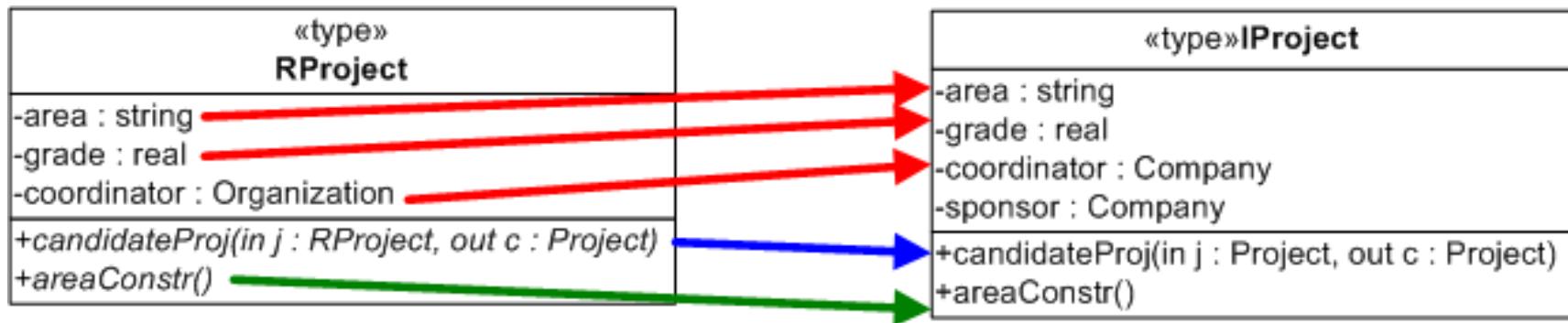
$$preO_{sup}(Abs(v_s), x?) \wedge postO_{sub}(v_s, v'_s, x?, y?) \Rightarrow$$

$$postO_{sup}(Abs(v_s), Abs(v'_s), x?, y?))$$
- Type specification (ex. T_{sup}) is *correct* if
 - it has a model $\exists v: V_{sup} (I_{sup}(v))$
 - type operations preserve type invariants

$$\forall v: V_{sup}, v': V_{sup}, x?: X, y?: Y ($$

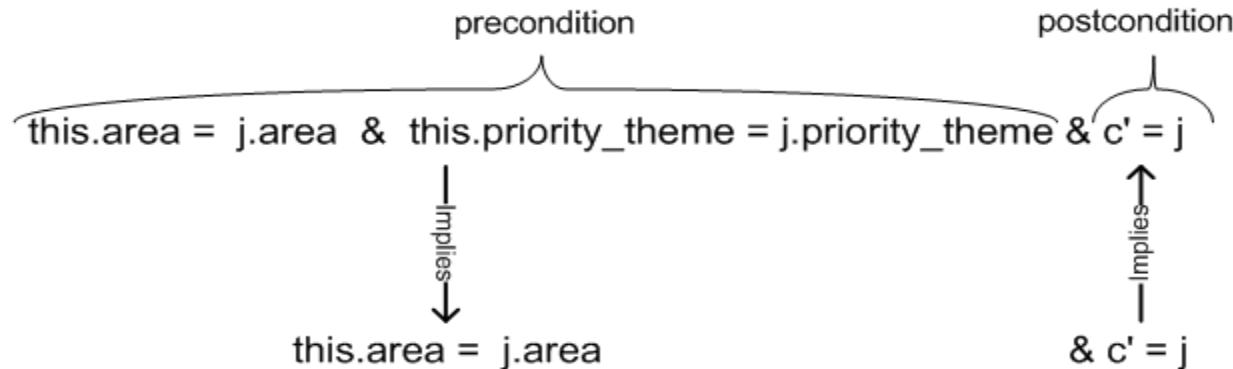
$$I_{sup}(v) \wedge preO_{sup}(v, x?) \wedge postO_{sup}(v, v', x?, y?) \Rightarrow I_{sup}(v'))$$

Subtype relation example (I)

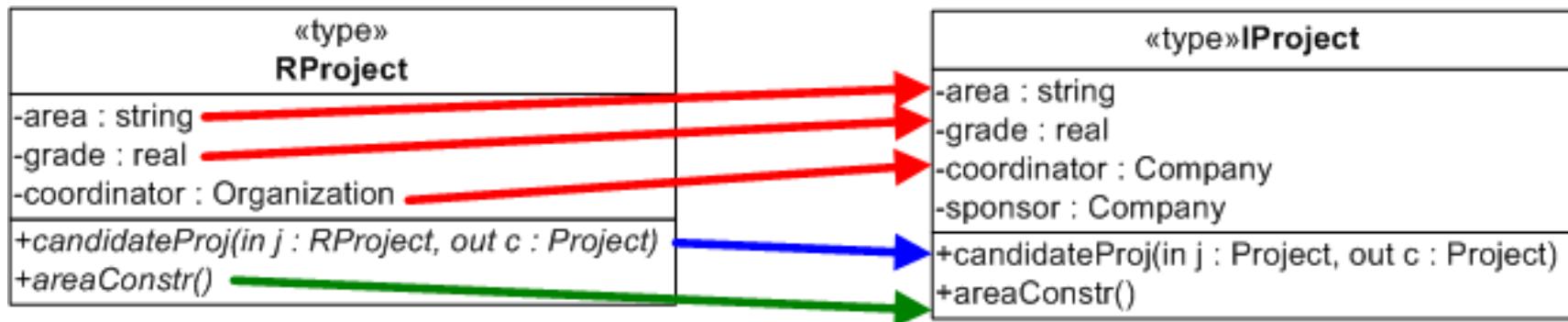


- *Organization* is a supertype of *Company*

- *RProject.candidateProj*
is refined by
IProject.candidateProj



Subtype relation example (II)



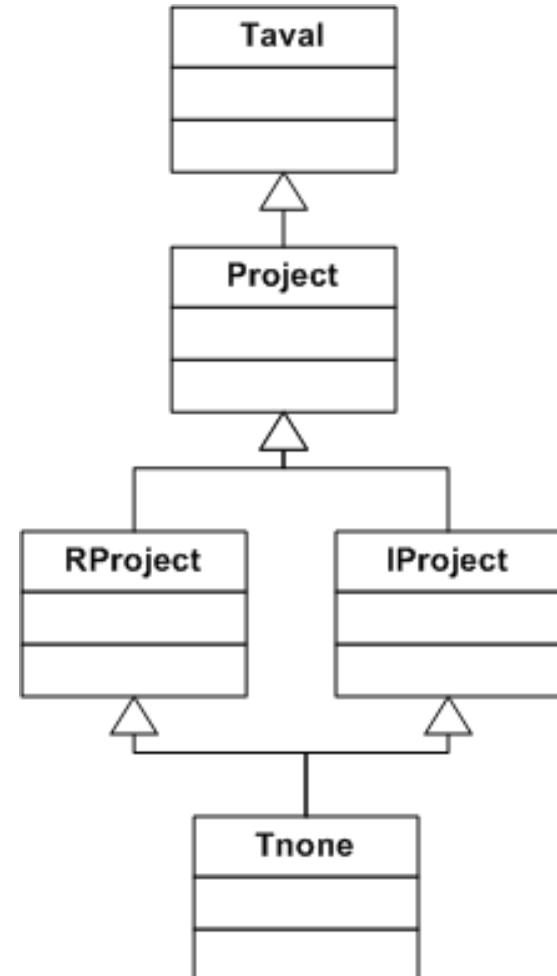
- *Iproject.areaConstr*
is implied by

Rproject.areaConstr

$p.\text{area} = \text{'comp-sci'} \Rightarrow p.\text{grade} \geq 3$
 —————↑
 $p.\text{area} = \text{'comp-sci'} \Rightarrow p.\text{grade} = 5 \text{ &}$
 $(p.\text{priority_theme} = \text{'open systems'} \mid p.\text{priority_theme} = \text{'interoperability'})$

Overdefined and Least Informative Types

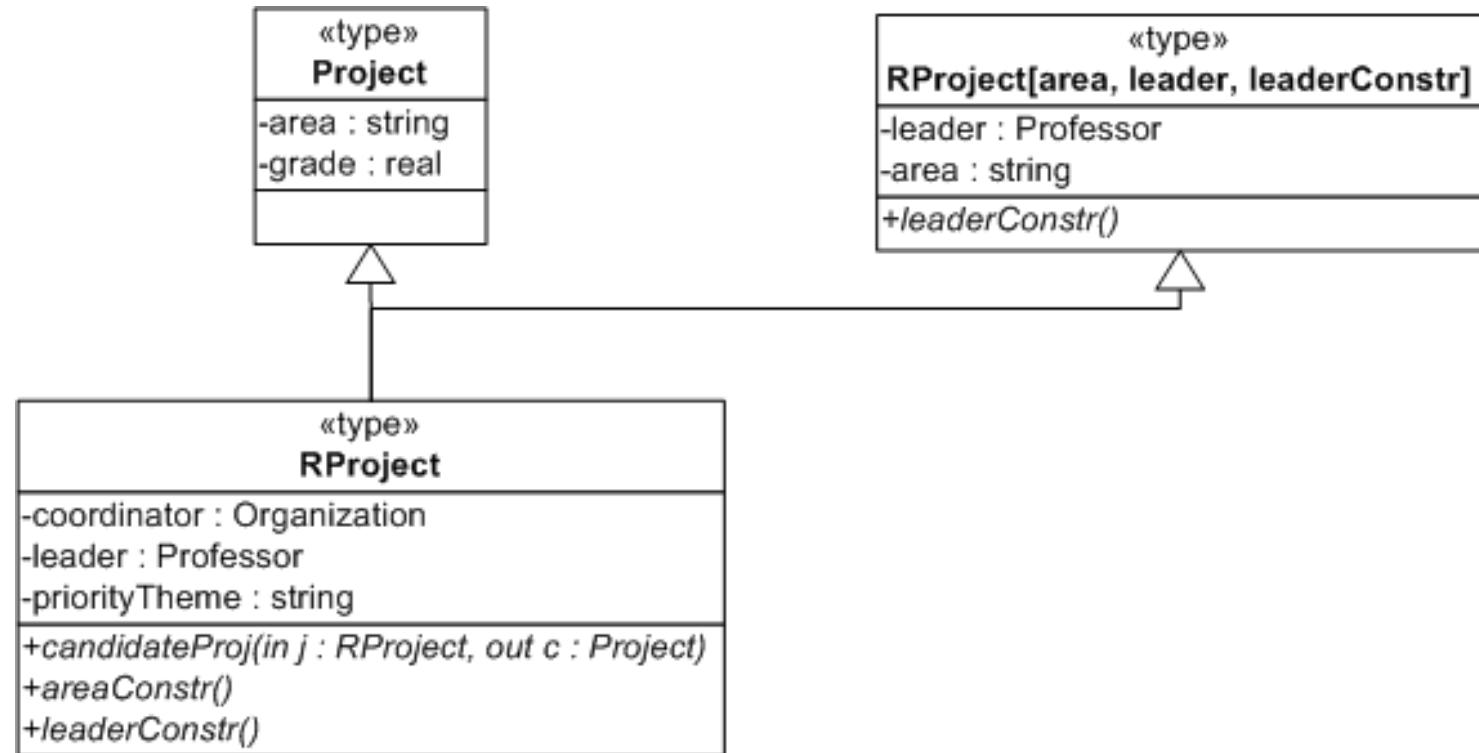
- **Taval** is *least informative type*, any type is a subtype of Taval
- **Tnone** is *overdefined type*, any type is a supertype of Tnone
 - predefined *none* value is of type Tnone and may be returned by a function as an empty result of any type



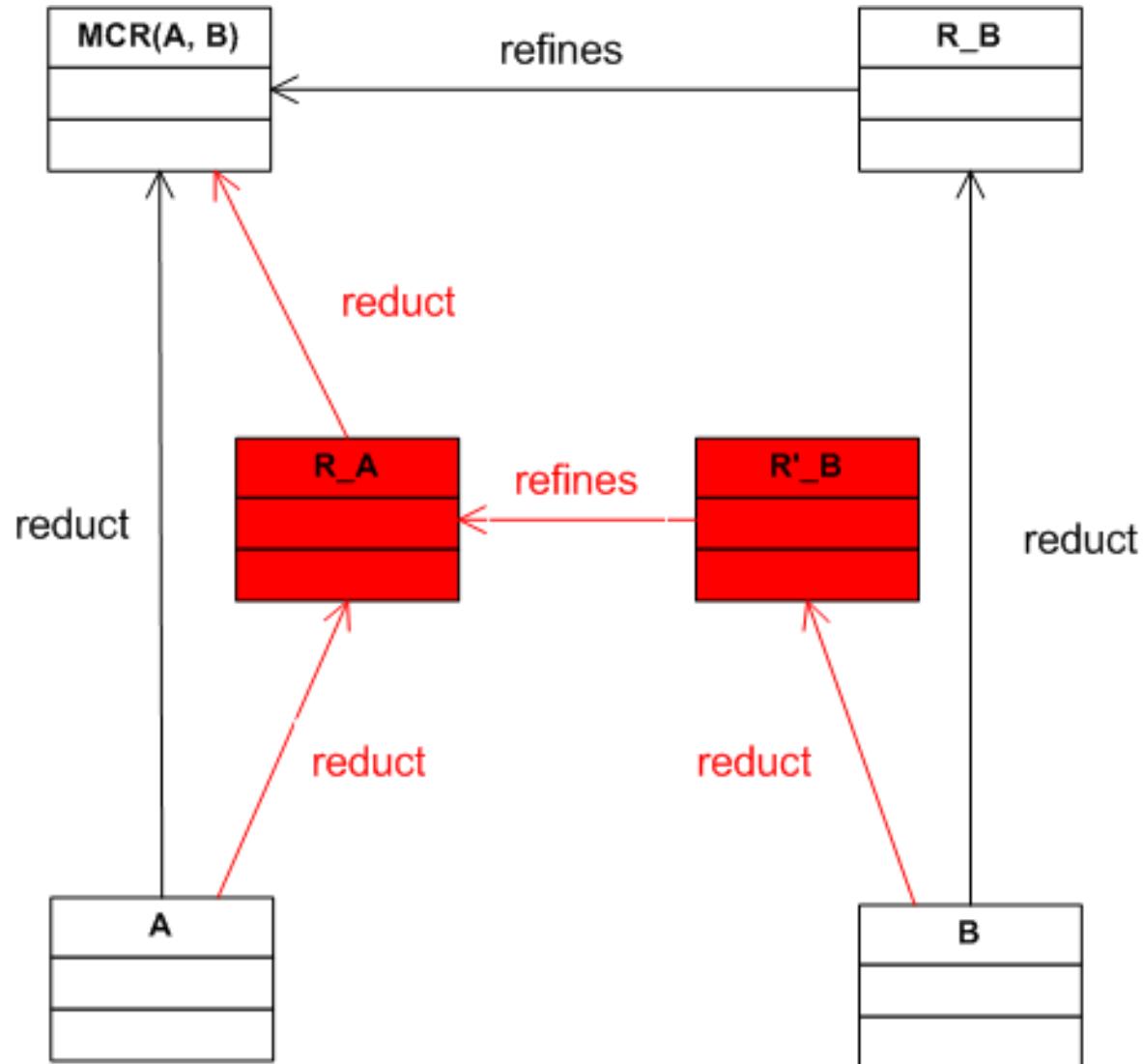
Type Reduct

- Reduct $R_T = \langle V_R, O_R, I_R \rangle$ of type $T = \langle V_T, O_T, I_T \rangle$ is a subspecification of type T :

- $V_R = V_T$
- $O_R \subseteq O_T$
- $I_R \subseteq I_T$



Most Common Reduct



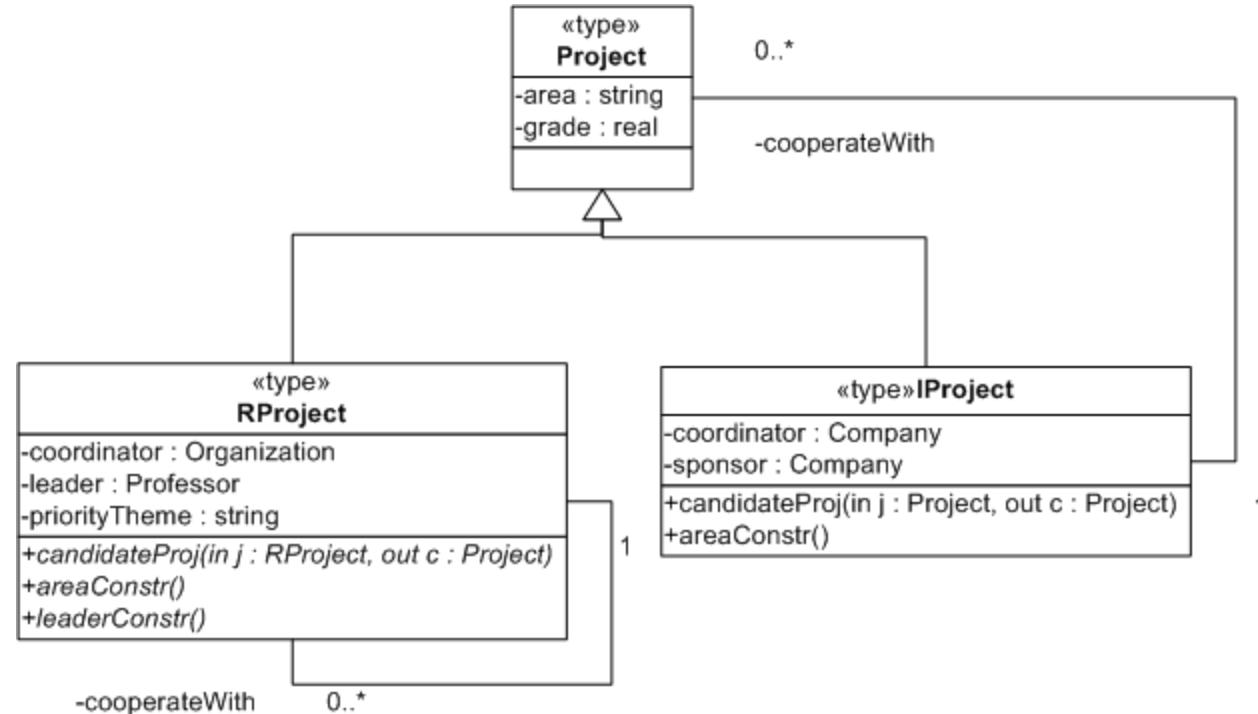
$MCR(A, B) \neq$
 $MCR(B, A)$

Type Refinement

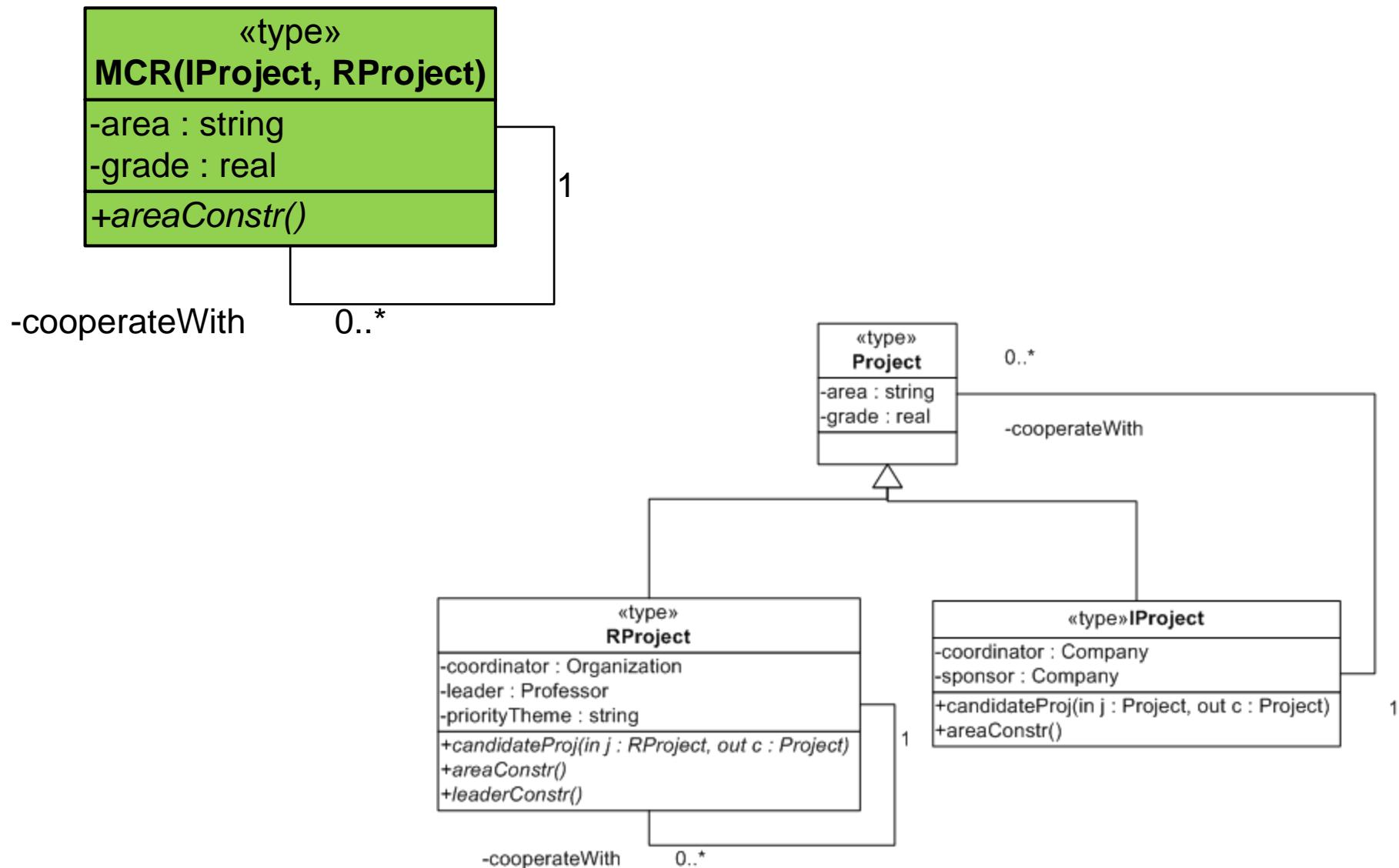
- Type U is a *refinement* of type T iff
 - there exists an injective mapping $\text{Ops}: O_T \rightarrow O_U$;
 - there exists an abstraction function $\text{Abs}: V_U \rightarrow V_T$ that maps each admissible state of U into the respective state of T
 - $\forall x \in V_T, y \in V_U (\text{Abs}(x, y) \Rightarrow I_U(y) \wedge I_T(x))$
 - for every operation $o \in O_T$ the operation $\text{Ops}(o) = o' \in O_U$ is a refinement of o
 - $\text{pre}(o) \Rightarrow \text{pre}(o')$
 - $\text{post}(o') \Rightarrow \text{post}(o)$.

MCR(RProject, IProject)

«type»
MCR(RProject, IProject)
-area : string
-grade : real
-coordinator : Organization
+candidateProj(<i>in j</i> : RProject, <i>out c</i> : Project)



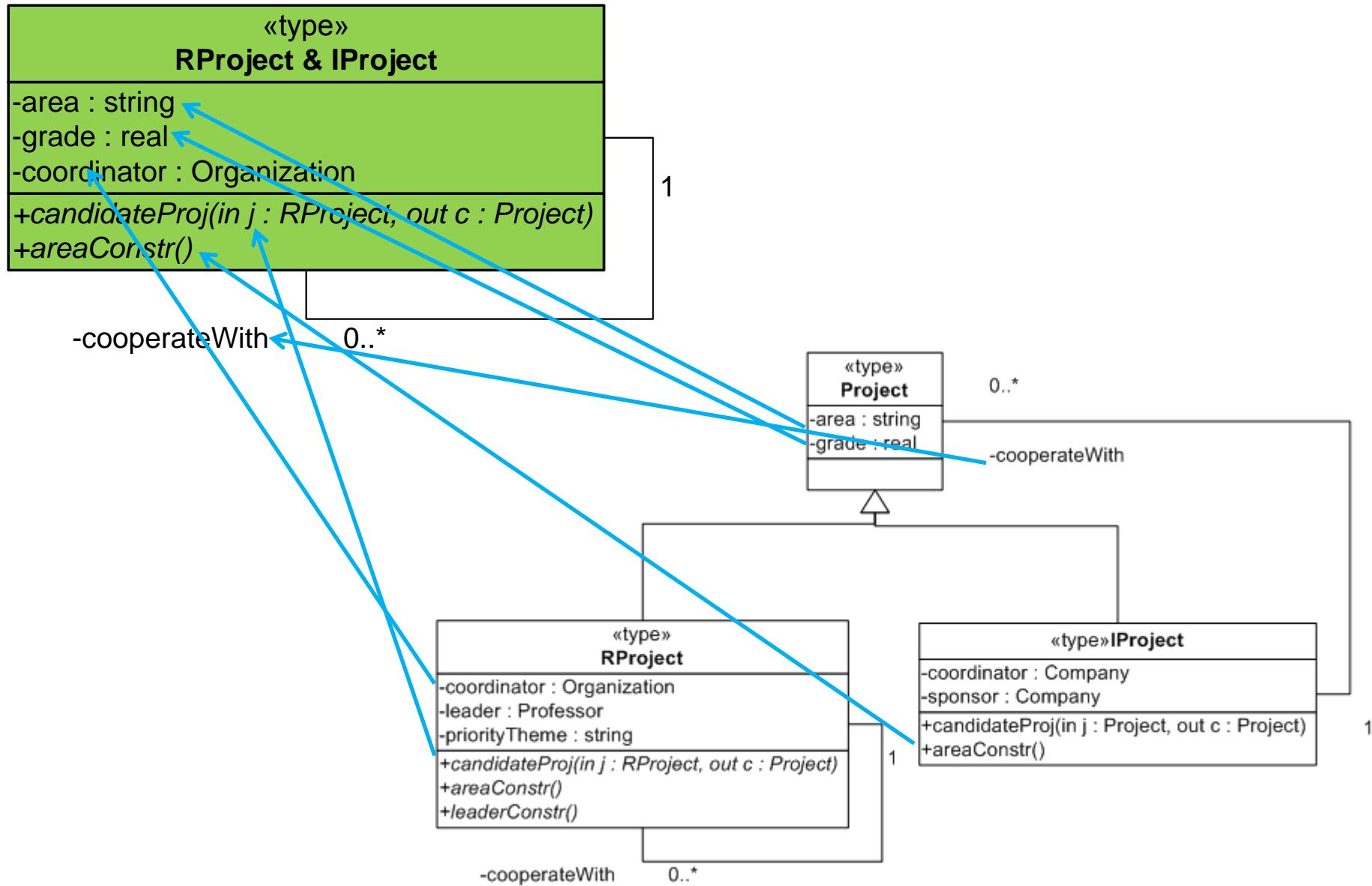
MCR(IProject, RProject)



Type MEET

- The *meet* operation $T_1 \& T_2$ of produces a type T as an "intersection" of specifications of the operand types
- Common elements of the types are defined by most common reducts $MCR(T_1, T_2)$ and $MCR(T_2, T_1)$
- $O_{T_1 \& T_2} = O_{MCR(T_1, T_2)} \cup O_{MCR(T_2, T_1)}$
- Type invariant of T is defined as a disjunction of operand types invariants $Inv_{MCR(T_1, T_2)} \mid Inv_{MCR(T_2, T_1)}$
- $T_1 \& T_2$ is a supertype of both T_1 and T_2

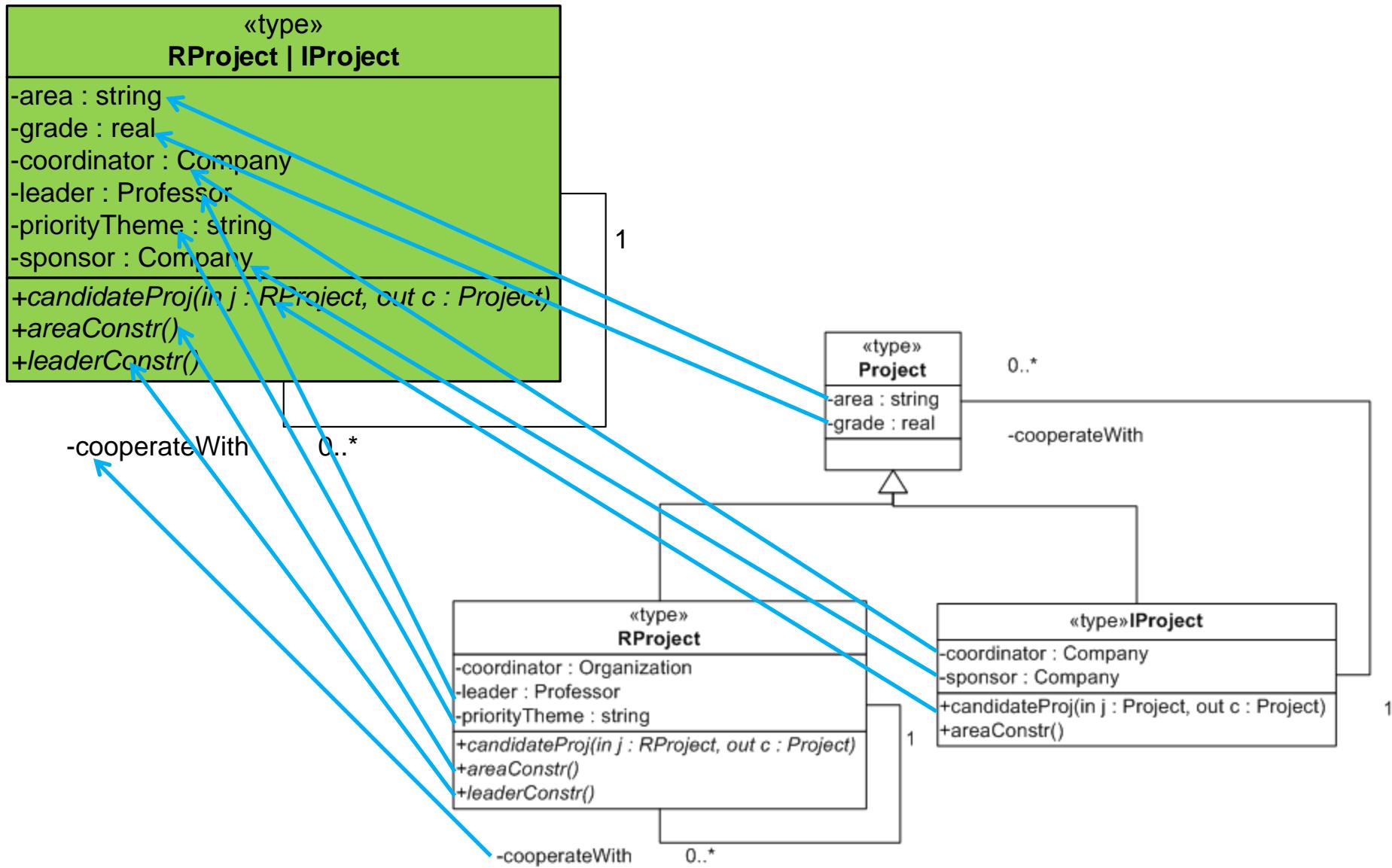
Type Meet Example



Type JOIN

- The *join* operation $T_1 \mid T_2$ produces a type T as a "join" of specifications of the operand types, common elements are included only once
- Common elements of the types are defined by most common reducts $MCR(T_1, T_2)$ and $MCR(T_2, T_1)$
- $O_{T_1 \mid T_2} = (O_{T_1} \setminus O_{MCR(T_1, T_2)}) \cup (O_{T_2} \setminus O_{MCR(T_2, T_1)}) \cup (O_{MCR(T_1, T_2)} \cap O_{MCR(T_2, T_1)})$
- Type invariant of T is defined as a conjunction of operand types invariants $Inv_{T_1} \& Inv_{T_2}$
- $T_1 \mid T_2$ is a subtype of both T_1 and T_2

Type Join Example



Type Lattice

- Set ν of types is a *lattice* over *meet* and *join* operations
 - commutativity
 - $T_1 \& T_2 = T_2 \& T_1$
 - $T_1 | T_2 = T_2 | T_1$
 - associativity
 - $T_1 | (T_2 | T_3) = (T_1 | T_2) | T_3$
 - $T_1 \& (T_2 \& T_3) = (T_1 \& T_2) \& T_3$
 - idempotence
 - $T \& T = T$
 - $T | T = T$
 - absorption
 - $T_1 \& (T_1 | T_2) = T_1$
 - $T_1 | (T_1 \& T_2) = T_1$